(x+1)(2x-5)=1-x^2

Simple and best practice solution for (x+1)(2x-5)=1-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(2x-5)=1-x^2 equation:



(x+1)(2x-5)=1-x^2
We move all terms to the left:
(x+1)(2x-5)-(1-x^2)=0
We get rid of parentheses
x^2+(x+1)(2x-5)-1=0
We multiply parentheses ..
x^2+(+2x^2-5x+2x-5)-1=0
We get rid of parentheses
x^2+2x^2-5x+2x-5-1=0
We add all the numbers together, and all the variables
3x^2-3x-6=0
a = 3; b = -3; c = -6;
Δ = b2-4ac
Δ = -32-4·3·(-6)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-9}{2*3}=\frac{-6}{6} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+9}{2*3}=\frac{12}{6} =2 $

See similar equations:

| x^2+1.1X10^6x+4.86X10^-6=0 | | 2x+1=5-3(x-2) | | 2+n÷9=n÷3-3 | | 2+n/9=n/3-3 | | 3t^2+8t-8=0 | | 6/k-2=2 | | 3(x-2)+4(3x-1)=0 | | 2x(-1)-3=-2 | | x^2+9x=3=0 | | 4(2y-3)=3(6y+5) | | 5x-6x=9-11 | | (e=1)*3=9 | | 5x+46=7x-14 | | 11^2+3^2=c^2 | | 2/5n+1=-1 | | 8^2+12^2=c^2 | | k+k+k+4=44 | | 7(x-3)+3(4-x)=-18 | | 6y=7y-18 | | A(8x+7)=5x+3.5 | | 1/4x+15/8=7/38 | | 5(x-7)=2/3x+15x= | | 5(x-7)=2/3x+15 | | 6x+36=5x | | 0=-16+80t+20 | | 8.2x+4-4.2x=8 | | 0=5x2+12x+8 | | 2(9x-1)=99-21 | | 1.2*(x*x*x)=3.0 | | x*x*x=2.5 | | 0.6(x+2)=0.55(2x+3 | | (6x+20=) |

Equations solver categories